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Abstract

We present a simple incremental model for
stable topic segmentation in spoken dia-
logue. The model is based on the prin-
ciple of Uniform Information Density and
only utilises differences in syntactic com-
plexity of the interlocutors to predict topic
shifts in upcoming turns. While this sim-
ple set of features is not sufficient to re-
produce segmentations of more involved
methods, we show that it produces coher-
ent and intuitively sound topic segments
even for noisy dialogue transcripts.

1 Introduction

Xu and Reitter (2018) introduced a novel,
information-theoretic view of dialogue, in which
they proposed modelling a conversation between
two interlocutors as a two-way communication
system. In such a system the information flow fol-
lows a number of general principles. One of the
principles that is assumed to hold in dialogue is the
Uniform Information Density hypothesis (UID,
Jaeger and Levy (2007); Jaeger (2010); Temper-
ley and Gildea (2015)). The UID hypothesis states
that a communication system as a whole has the
tendency to distribute data in such a way that the
density of information remains constant.
In two-party dialogue both interlocutors are equal
parts of the communication system. This means
that they are jointly responsible for the level of
information density at every moment of the con-
versation. In order to ensure the validity of the
UID hypothesis, the two speakers must therefore
have an agreement in an implicit sense about their
contribution to the conversation. Xu and Reitter
propose that speakers take on certain roles dur-
ing a conversation: One leads the conversation by
steering the ongoing topic, while the other follows

along. These roles can switch during a conversa-
tion and rather than steering turn-taking behaviour,
they describe a higher-level segmentation of a con-
versation into topics.
In this paper, we investigate whether we can detect
the boundaries of these conversation segments,
formally referred to as topic shifts in Conversation
Analysis Keating (2000); Ng and Bradac (1993)
based on the speaker’s contribution to the con-
versation alone. To this end we extract a num-
ber of simple syntactical features that have been
shown to correlate well with the amount of infor-
mation transmitted (Genzel and Charniak (2002);
Jaeger and Levy (2007); Jaeger (2010)) and build
a simple prediction model based on these features.
While we had to conclude that this simple ap-
proach does not yield a model expressive enough
to correctly predict topic shifts produced by more
involved methods, we claim that it nonetheless
produces coherent and intuitively sound topic seg-
ments even for noisy dialogue transcripts.
In Section 2 we present previous work on topic
segment analysis. Section 3 then introduces our
approach to topic shift prediction, describing the
data, features and models used. Due to negative
results, we propose a second approach detailed in
4 that makes further use of the collected data. Sec-
tion 5 concludes this paper with a summary of our
conclusions and a discussion of our findings.

2 Related Work

Conversation Analysis theories state that regu-
lar, non task-driven conversations contain several
topic episodes (Keating (2000); Ng and Bradac
(1993)). Within each of these episodes, one of the
speakers will take on a leading role, unfolding a
new topic, while others play a more passive role
and follow the topic shift. Introducing a new topic
thus means that the topic leader supplies a large



contribution of new information, whereas towards
the end of a topic segment neither of the speakers
would have any more relevant information to con-
tribute to the topic. We can therefore assume that
the information contributions from each interlocu-
tor converge in a topic segment.

2.1 Measures of Information Content
Xu and Reitter (2018) analyse these patterns of in-
formation contribution to a conversation through
an information-theoretic model, formulating sen-
tence information H(S) as

H(S) = H(w1...wn) (1)

≈ − 1

n

∑
wi∈W

logP (wi|w1....wi−1) (2)

≈ − 1

n

∑
wi∈W

logP (wi|wi−2, wi−1) (3)

using a trigram language model, where
P (wi|wi−2, wi−1) is estimated through Katz
backoff Katz (1987) (see B for more details).
They apply this measure to topic segments pro-
duced by TextTiling (Hearst, 1997), one of the
most well-known topic segmentation algorithms
for written text, since no gold-standard annotated
data is available at the present time. TextTiling
determines topic shifts based on lexical similarity
between consecutive sequences of words. It splits
the text into sequences of words of fixed length,
then measures the similarity between adjacent se-
quences and places boundaries whenever there is
a radical change in this measure. The boundaries
are then moved to the closest paragraph change in
the original text.

2.2 Assignment of Speaker Roles
Having segmented all conversations into topic
episodes with TextTiling, the next step in calcu-
lating the development of sentence information in
the segments is to determine which speaker takes
on the role of topic leader. To do so, Xu and Reitter
propose two rules for speaker role differentiation:

• Rule 1: If the topic episode starts in the mid-
dle of the speaking turn of a given speaker,
let that speaker be the leader of this topic seg-
ment.

• Rule 2: If the topic episode starts with a new
speaking turn, let the first speaker who con-
tributes a sentence longer than five words be
the leader of this segment.

Dividing the speakers in this way and collecting
sentence information for each role individually,
Xu and Reitter observe the expected convergence
of contribution within a topic segment.

3 Topic Shift Prediction

Assuming that convergence within topic segments
exhibits stable behaviour, we propose to reverse
the approach of Xu and Reitter and use the conver-
gence of contribution as a feature to predict topic
segments. More precisely, we propose an incre-
mental model that, given appropriate features from
an ongoing topic segment, predicts after each ut-
terance whether a new topic will be introduced in
the next utterance. This way the model can read-
ily be used in real-time spoken dialogue segmen-
tation and can be introduced as a module in ar-
tificial dialogue agents to determine when to in-
troduce new information into a conversation - and
when to follow the other speaker in an ongoing
topic. To do so, the proposed model must learn
the correct weights of a set of sentence features so
that the combination of activations induced by a
given sentence can be used to determine whether
the next utterance is likely to belong to a new topic
or will be a continuation of the current one.

3.1 Data

For all experiments in this paper we use the
Switchboard SwDA corpus (Godfrey et al., 1992).
We also did the convergence experiments with
the British National Corpus (BNC, BNC Consor-
tium (2007)) to verify if the same behaviour is
observed. Albeit present, it is more noisy and
so any other experiments were performed on the
SwDA only. SwDA contains 641 telephone con-
versations of pairs of US-American English native
speakers asked to discuss a given topic. From the
BNC we use the BNC-DEM section (spoken, ca-
sual conversations) that contains 1352 conversa-
tions, filtered down to 1290 2-party conversations,
which we pre-processed with the Stanford parser
(Chen and Manning, 2014) to obtain sentence syn-
tax data. A detailed summary of the two data sets
is displayed in table 1.

3.2 Features

Due to the incremental nature of the model, we
only want to use features that can be calculated
locally. Sentence information however can be ex-



Dataset Size Filters Syntax data
BNC-DEM 1290 2 speakers Stanford parser

SwDA 641 - Included

Table 1: Details of the two data sets used in this
study.

pensive to calculate and requires a pre-processing
of the entire corpus to obtain global frequency
counts. We therefore require a simpler set of fea-
tures to approximate sentence information mea-
sures in our model.
Previous studies have pointed out that sentence in-
formation is closely correlated with other syntac-
tic complexity measures of sentence (Genzel and
Charniak (2002); Jaeger and Levy (2007); Jaeger
(2010)). Like Xu and Reitter (2016) we follow
this approach and analyse speaker contributions
using three simple, syntax-related features: Sen-
tence length, tree depth and tree width.

1. Sentence length (SL): Number of words.
Longer sentences are likely to indicate more
sentence information

2. Tree depth (TD): Longest distance between
root and leaf nodes in the parse tree of a sen-
tence

3. Tree width (TW): Average number of chil-
dren of all non-leaf nodes in the parse tree of
a sentence. Syntactically complex sentences
are typically used to express more complex
meanings and are therefore likely to contain
more information

Both tree depth and tree width are strongly cor-
related with sentence length and should be nor-
malised. Following Xu and Reitter, we calculate
the average respective measure for sentences of
the same length and use it as normalising constant.
This way we obtain two additional features:

4. Normalised tree depth (NTD): Tree depth
normalised by average depth per sentence
length

5. Normalised tree width (NTW): Tree width
normalised by average width per sentence
length

Figure 1 shows the average development of
these features within topic segments in a two-party
dialogue as produced by TextTiling on the SwDA

data set. Whilst we see similar convergence be-
haviour for the non-normalised measures as ob-
served by Xu and Reitter, with our implementation
we also obtain fairly stable behaviour for the nor-
malised measures. Here Xu and Reitter reported
a much smaller although significant convergence
behaviour on Switchboard - but had interchanged
contributions for the leader and follower roles in
their NTW.
Having collected the five complexity measures for
each utterance in the two data sets, we annotate
each utterance with a binary label: 1 if the next ut-
terance is the initial utterance of a new topic seg-
ment as predicted by TextTiling and 0 otherwise.
In this way we obtain an annotated dataset that can
be used to learn optimal feature weights through
supervised machine learning.

3.2.1 Additional Features
Given that having only a handful of non-
independent features may be a limiting factor for
successful training, we propose calculating in ad-
dition a number of higher-level, relative features
using the following basic metrics as a starting
point:

6. Initial/previous/current difference: Cal-
culates the absolute difference between
the two speaker’s contributions during
the first/previous/current turn of the topic
episode.

9. Contribution development: Calculates the
degree of change between the initial and
current difference in speaker contribution
through dividing the current difference by
the initial difference. This can also be done
for the development from previous to current
turn.

11. Utterance counter: Indicates the utterance’s
position within the current topic.

12. Speaker role: 1 if the speaker is the topic
leader, 0 otherwise.

Each row in the resulting training dataset con-
tains 42 features: the five basic measures for the
initial, previous and current utterance (15), the dif-
ference in contribution for the basic measures at
those three points in time (15), the ratio of change
between initial and current and previous and cur-
rent (10), the utterance counter and the binary role
label.
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Figure 1: Development of the five basic features within topic shifts produced by TextTiling on the SwDA
data set for topic leader (green) and follower (blue) roles. The x axis ranges over the position of an
utterance within a topic.

3.3 Models

Now that we have a satisfactory amount of fea-
tures, the next issue to address is the skewed distri-
bution of labels: Naturally the ’shift’ category will
be significantly less frequent than the ’non-shift’
one, resulting in a ratio of about 33:1 in SwDA.
Since this unbalanced distribution of data hampers
naive approaches to Machine Learning, we pro-
pose to use two different models that have shown
good performance in dealing with skewed data:
An auto-encoder (AE) outlier detection model and
a simple multilayer perceptron (MLP) binary clas-
sifier with oversampling.

3.3.1 Auto-encoder Outlier Detection

The reason for using an auto-encoder to address
this problem is that we can filter out all sentences
labelled as inducing topic shifts from the train-
ing data and have the auto-encoder optimise its
parameters so as to optimally reconstruct this fil-
tered dataset. Its performance in this task is mea-
sured through a reconstruction loss: The closer the
produced outputs are to the actual inputs of the
model, the lower the loss. So if there are underly-
ing characteristics describing sentences which are
not followed by a topic shift in our data, the model
attempts to learn those characteristics to improve
its performance. Consequently, assuming that ut-
terances which induce a topic shift have different
characteristics, this will mean that their encodings
will result in a higher reconstruction loss as the
model cannot fit them to the learned characteris-
tics. We can thus use a difference in reconstruc-
tion loss to classify novel sentences into two cate-
gories: Shift and non-shift utterances.

3.3.2 Multilayer Perceptron (MLP) Binary
Classifier

MLPs on the other hand are one of the most
widely applicable machine learning tools, optimis-
ing their parameters to reduce classification error
on a binary annotated training set. This simple
model however performs badly on highly skewed
data: if it were to predict every sentence to be
non-shift, this would still yield a near perfect ac-
curacy of 96% - while at the same time not detect-
ing any of the topic shifts. To counter this issue, a
technique called oversampling can be used: Every
training batch is enriched with an artificially high
number of shift samples so that classifying them
correctly becomes equally important to the model.

3.4 Experiments

For the auto-encoder, we use a simple architecture
that was shown to work well for detection of credit
card fraud on the Kaggle dataset, as implemented
by Venelin Valkov. We train until convergence at
about 50 epochs with a batch size of 32, using a
80-20 train-test split of our dataset where we re-
move all topic shift samples from the training set.
We therefore obtain 90855 training samples and
23433 test samples. The data is normalised to zero
mean.

For the MLP, we implemented two hidden lay-
ers with 20 nodes each using ReLU activations.
The learning rate was set to a constant 0.001. We
train until convergence at about 100 epochs with
a batch size of 64, using the same dataset as be-
fore but instead of removing topic shift samples
from the train set we use SMOTE oversampling
(Chawla et al., 2002) to produce artificial sam-

https://www.kaggle.com/dalpozz/creditcardfraud
https://github.com/curiousily/Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras/blob/master/fraud_detection.ipynb


ples close to the underrepresented shift samples.
We therefore obtain 181710 training samples and
23433 test samples.

3.5 Results
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Figure 2: Train and test set error of the auto-
encoder. The train set does not contain any topic
shift samples.
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Figure 3: Reconstruction errors for all data sam-
ples. The threshold line should split topic shift
samples (green) from non-shift samples (blue).

Figure 2 shows the training and test loss of the
auto-encoder outlier detection model. The aver-
age loss on the test set here is even lower than the
training set error, indicating that the training set
contains a large number of outliers that do not ac-
tually indicate topic shifts. Since our goal is to
use the reconstruction error to detect samples that
indicate topic shifts, we therefore expect a high
number of false positives when we try to split the
data samples into shift and non-shift groups. This
is validated by plotting the per-sample reconstruc-
tion error in Figure 3: The objective is to place the
horizontal threshold line so that it separates shift
and non-shift samples as good as possible - but it is

not possible to actually perform such a split since
shift and non-shift samples seem to be equally dis-
tributed, i.e. they do not produce significantly dif-
ferent reconstruction errors. We therefore cannot
use this method to learn optimal feature weights
for the topic shift prediction task.

When training the MLP using SMOTE over-
sampling with ratio 1:1, we obtain about 32% test
set accuracy - with still only 3 correct predictions
of topic shifts and more than 6000 wrongly pre-
dicted shifts.

3.6 Conclusion

We appear to be unable to predict the topic
shifts produced by TextTiling with the provided
syntactical complexity features alone. Since intu-
itively the clear convergence behaviour observed
within an average topic should provide enough
information to reproduce the topic shifts, we find
this a surprising result.

Our main hypothesis to explain why the lo-
cal syntax features could be insufficient to predict
TextTiling’s topics is that TextTiling itself uses
more global information to segment a conversa-
tion. Topic shifts therefore do not only depend on
previous utterances, but also on subsequent utter-
ances. The observed convergence behaviour there-
fore might be an effect that correlates with Text-
Tiling segmentation of topics - but might not be
causally related to them. To validate this hypoth-
esis, we collected the same metrics as before for
randomly inserted topic shifts that produce about
the same number of topics as TextTiling. Figure
4 shows the average behaviour of sentence length
within those random segments: We can observe a
significant convergence behaviour even here. Con-
vergence of syntactic complexity alone therefore
appears not to be sufficient for predicting TextTil-
ing topics.

4 Topic Segmentation

While syntactical convergence might not be suf-
ficient to predict other model’s segmentations, it
can still be used to produce topic segments itself.
We therefore propose a different approach to topic
segmentation with the available syntax features:
Using a simple threshold model on the activation
of the collected features, we produce our own seg-
mentation of the data and assess its quality. Since
here again no topic-annotated gold-standard data
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Figure 4: Development of sentence length for
topic leader (green) and follower (blue) within
random segments of the SwDA data set.

set is available to compare our results to, we pro-
pose to use a set of external measures to compare
our model to other segmentation methods, like e.g.
TextTiling, and report the relative level of perfor-
mance.

4.1 Model

For our simple syntactical topic segmentation
model we start with a baseline that only utilises
the most basic form of local relative features. We
propose this baseline model to work as follows:
Determine the speaker roles at the onset of a new
topic. Then iteratively parse any succeeding utter-
ance ui ∈ T and record the five basic complex-
ity measures for ui. As soon as a minimum of
two measures are obtained for each speaker, we
calculate the difference in contribution in the ini-
tial utterance u0 (feature 6) and current utterance
ui (feature 7) and determine the development in
those measures between the start of the topic and
the current utterance (feature 9). This returns an
array of five ratios which increase when speaker
contributions converge. Subsequently, we take a
weighted sum of these five ratios and check if the
result passes a given threshold (see Appendix C
for a schematic view).
Using this model setup we obtain a total of six pa-
rameters to be optimised: The five feature weights
and the threshold. Due to the threshold setup we
however can no longer automatically learn the op-
timal parameters and need to run a grid search
pipeline to determine them based on a given eval-
uation metric instead.

4.2 Evaluation
In order to quantitatively evaluate model perfor-
mance, optimise its parameters - and compare its
outputs to those of other segmentation methods -
we need a set of metrics that capture the cohesion
of the produced topic segments. Cohesion indi-
cates how separate a predicted topic is from the
next. If there’s too much cohesion between con-
tiguous topics, then it is likely that they should
have been predicted as a single topic instead. In or-
der to obtain these metrics, we use a subset of the
measures provided by TAACO, the tool for the au-
tomatic analysis of text cohesion (Crossley et al.,
2016):

1. Adjacent paragraph overlap of content
words (AP Content Overlap): This met-
ric measures how much content is shared be-
tween contiguous paragraphs. In our usage of
the tool, a paragraph equals a topic. Specif-
ically, this metric reports the average num-
ber of words in scope that each topic have in
common with the next topic. For this, the text
is lemmatized (e.g. verbs are all transformed
to infinitve form, nouns are all turned to sin-
gular form) before doing the calculation. The
total number of overlap words for all topics,
is divided by the total number of words in the
whole text. Only content words are consid-
ered.

2. Adjacent paragraph overlap of content
words, paragraph normed (Paragraph-
normalised APCO): This metric is similar to
Adjacent paragraph overlap of content words,
but here instead of dividing by the total num-
ber of words in the text, the denominator is
now the number of topics. So while the first
metric can be interpreted as a proportion of
repetition amongst consecutive paragraphs,
this metric reports average number of content
words each pair of contiguous topics repeat.

4.3 Experiments
In order to evaluate our model performance, we
compared its scores on the AP Content Overlap
and Paragraph-normalised APCO metrics under
different parameter combinations to those of Text-
Tiling and the random segmentation with an aver-
age of 12 topics per conversation. Since equally
increasing weights and decreasing the threshold
has the same effect, we fixed the threshold to



Model Parameters No. Topics AP Content Overlap Par.-norm. APCO
TextTiling - 7.436 0.339 11.464
Random - 11.587 0.201** 7.247**

Threshold = 5 [1, 0.25, 0.25, 1, 1] 12.74 0.231** 8.884**
Threshold = 5 [3, 0, 0, 0, 0] 19.916 0.212** 5.731**

Table 2: Excerpt from the grid search for optimal parameters of the simple threshold topic segmentation
model. Scores marked ** are significantly different to the TextTiling results (p << 0.05)

an arbitrary set value (=5) and only adjusted the
weights accordingly.

4.4 Results

For an overview of some of the tested combina-
tions see Table 2. After an initial series of su-
pervised runs we observed that sentence length
alone often already determines whether the thresh-
old is passed or not. Only considering sentence
length therefore did not change the outputs sub-
stantially, and also gave us the best results on the
evaluated metrics. After some qualitative evalua-
tion we however only accredit a very limited ex-
pressiveness to these metrics; especially since ran-
dom topic segments consistently and significantly
outperform TextTiling and the topic segments pro-
posed by our model for almost all of the possible
parameter combinations.

4.5 Qualitative Analysis of produced samples

The intuitively best topics are produced by our
model with the threshold set to 5 and using the
feature weight vector [1, 0.25, 0.25, 1, 1]. An ex-
cerpt from a sample output of this model configu-
ration is displayed in AppendixD. The two speak-
ers were asked to talk about what they wear at
work. Here we will highlight some of the reasons
why we think that the topics displayed are intu-
itively ‘good’. Notice that we have no objective
measure for this criterion.

1. The second topic covers speaker A’s expla-
nation about her style of clothing at work
and ends with her asking ‘How about you?’,
changing the focus of the conversation. In the
third topic, speaker B then explains her style
of work wear.

2. Topic 5 starts with an elaborated statement
from speaker B who finds mini skirts quite
un-professional. Toward the end, speaker A
uses the ‘there are mini skirts and there are
mini skirts’ argument to start a new topic.

Topic 6 then starts with speaker A’s opinion
on mini skirts and starts a somewhat longer
discussion.

3. In topic 7 speaker B then introduces a new ar-
gument about feeling comfortable with one’s
choice of clothing based on your environ-
ment. In the same manner, most of the
following topics are introduced by a longer
statement of one of the speakers followed by
some form of discussion based on it.

4. The last two topics of the conversation then
nicely cover the formal ending and greeting
part

Neither the topics produced by TextTiling (in
this case only two) nor the random topic segments
exhibit any of the reported markers. Outputs of our
model with other parameters only exhibit some of
the features outlined above - but still a large part
of them scores better on the cohesion metrics than
the model that produced the displayed output. We
therefore suggest that neither the topics produced
by TextTiling nor the cohesion metrics actually
capture what we would intuitively call a topic in
spoken dialogue.

5 Conclusion

In this paper we show that while observing a
clear convergence of speaker contribution in a
dialogue topic segment as measured by a number
of measures capturing syntactic complexity, we
appear to be unable to predict the topic segments
using these features from preceding utterances
only. We can however utilise the convergence
behaviour to incrementally produce new topic
segments with very limited computational cost.
The resulting topic segments exhibit convergence
of speaker contribution like those of other mod-
els and seem to better capture what we would
intuitively call a topic in a common conversation.
The unavailability of annotated test data however



precludes an objective evaluation of these results
and should be the focus of succeeding research.

Although we can largely reproduce the conver-
gence behaviour as identified by Xu and Reitter
(2016) in TextTiling topics, we also observe com-
parable convergence patterns in random text seg-
ments. We therefore question the existence of a
strong relationship between what TextTiling labels
as topics and the re-occuring syntactical conver-
gence of speaker contributions in a dialogue. We
rather propose that it might be a fundamental char-
acteristic of spoken conversations that new infor-
mation is added whenever both speakers can as-
sume that previous information was taken in by
both speakers and is agreed upon. The task of sub-
sequent utterances then is to make sure that this
new information is shared by the speakers, intro-
ducing less and less additional information until
convergence. Defining these exchange patterns as
topics, our model provides a very simple way to
incrementally predict when speakers have reached
agreement about the information shared and thus
new information should be added. While we cur-
rently cannot yet test this against a gold standard
model of topic segmentation of spoken dialogue,
we strongly encourage further research into this
novel approach.
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A Contribution

Janosch collected the features and implemented,
trained and optimised the models. Fabián prepared
the BNC corpus and took care of the evaluation of
model outputs using TAACO. Kwesi contributed
to the project and proofread the final report.

B Information Metrics

Xu and Reitter (2018) analyse these patterns of in-
formation contribution to a conversation through
an information-theoretic model. Based on the for-
mulation of entropy:

H(X) = E[I(X)] = E[− log(P(X))] (4)

=
n∑

i=1

P(xi) I(xi) (5)

= −
n∑

i=1

P(xi) logb P(xi) (6)

by Shannon (1948), which originally is a measure
of the capacity of a channel, they formulate sen-
tence information H(S) as:

H(S) = H(w1...wn) (7)

≈ − 1

n

∑
wi∈W

logP (wi|w1....wi−1) (8)

≈ − 1

n

∑
wi∈W

logP (wi|wi−2, wi−1) (9)

using a trigram language model, where
P (wi|wi−2, wi−1) is estimated through Katz
backoff Katz (1987). Since this however strongly
correlates with sentence length, following an
approach by Genzel and Charniak (2002) they
further propose to normalise sentence information
by dividing a sentence’s information content by
the average information content of sentences of
the same length. To do this, they calculate the
average information H(n) for all sentences of
length n:

H(n) =
1

|S(n)|
∑

s∈L(n)

H(s) (10)

and normalised sentence information H ′(s) con-
sequently as:

H ′(s) =
H(s)

H(n)
(11)

With this measure, they observe that sentence in-
formation significantly increases with the global
position of an utterance - which is a well-known
phenomenon from the domain of written text anal-
ysis.

C Threshold Topic Segmentation Model

Data: transcript T, weights W
Result: Next topic shift index
leader measures L = [0,0,0,0,0];
follower measures F = [0,0,0,0,0];
while T contains utterances do

U = next utterance in T ;
update measures(U); if (length(leader
measures) ≥ 2 & length(follower
measures) ≥ 2) then

initial distance I = L[0] - F[0];
current distance C = L[-1] - F[-1];
development D = (I - C) / I;
topic score = weighted sum(D, W);
if (topic score > threshold) then

return index;
end

end
end

Algorithm 1: Simple threshold topic segmenta-
tion algorithm

D Example Model Output

—– Topic 1 start at 0 —–
B: Okay, B: what do you usually wear to work? A:
Well, uh, I am basically retired now. B: Uh-huh.

—– Topic 2 start at 4 —–
A: I was a member, A: I was in education and in
administration, B: Uh-huh. B: Uh-huh. A: And,
uh, heels, A: and I was never one, uh, because
my work often took me into court, uh, never was
one that got, uh, accustomed to wearing pants
suits and pants to work. B: Uh-huh. A: But that
was just me. A: I know many people are co, very
comfortable in the classroom and what have you
wearing pants. A: Uh, it, A: I guess I was just old
enough not to, uh, be very comfortable in it. B:
Uh-huh. A: How about you?

—– Topic 3 start at 17 —–
B: Well, I work at T I B: and they do n’t really
have, uh, dress code, so to speak there. B: It ’s
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Figure 5: Development of the five basic features within topic shifts produced by TextTiling on the BNC
data set for topic leader (green) and follower (blue) roles. The x axis ranges over the position of an
utterance within a topic.

pretty lax about, um, you know, B: we-, you can
pretty much wear whatever you want to, B: and
I wear anything from jeans, when I ’m feeling
really casual to, uh, suits and dresses when I ’m
meeting with a customer A: Oh. B: and so when
I ’m teaching a class, obviously I wear a suit or
dress, A: Uh-huh. B: It, it, uh, definitely fluctuates
mainly with what I ’m going to be doing that day
and kind of what my mood is B: and when it ’s
raining, B: I ’m more likely to wear jeans B: and,
and when it ’s really cold I ’m more likely to wear
jeans or pants or sweaters, or that type of thing.
[...]

—– Topic 7 start at 86 —–
B: Well I feel like too, on the job, when, you
know, there ’s men around and some of the
managers are men, you just, you know, you do n’t
want them looking at your legs necessarily. A:
That ’s right. B: And, uh, to me I just would n’t
feel comfortable in that at work, B: but, uh, A:
Well, I, I, uh, I have to, uh, agree with that, even
when they was very, very popular in the early
sixties, B: Uh-huh. A: uh, I, uh, uh,

—– Topic 8 start at 93 —–
A: again maybe because I was at the school, there
were still many teachers who wore mini skirts, B:
Uh-huh. A: uh, we had no regulation against it
A: and a lot of the kids did of course, A: and it
could be very embarrassing for the men teachers.
B: Right. A: Because they were not that careful in
how they handled themselves in those mini skirts.
B: Right. [...] A: Right, A: right. B: So, that ’s
I think, that is good that they ’re like that. B: I
do know there ’s a lot of companies that are very

strict about what the employees wear B: and they
must wear blue or gray or black and a white shirt
and, A: Yeah. B: you know, no variation, B: and I
do n’t, I do n’t quite agree with that. A: Yeah, A:
well, I do n’t either.

—– Topic 11 start at 174 —–
A: Fortunately I do n’t have to work in those
companies. B: Right. A: But, uh, I, I, uh, did have
a group come over from one of the banks, over
the children ’s hospital where I was volunteering
A: and, uh, they were doing a presentation A: and
every one of the young execs coming up were
dressed exactly a like, men and women. A: They
all had on the gray jackets and the gray trousers or
sla-, or skirts and the white blouses and the same
color tie. B: Uh, right. A: And one was a skirt and
one was a pant. B: Yeah. A: And, uh, and I think
that ’s sad because that does n’t allow for any
individuality. B: Uh-huh. A: That ’s, uh, can stifle
creativity. B: Right, B: I agree. A: So. B: Well, it,

—– Topic 12 start at 190 —–
B: I guess we ’ve talked probably long enough.
A: I guess so, A: well it ’s been nice talking with
you. B: Nice talking to you too, B: I enjoyed it.
A: Uh-huh,

—– Topic 13 start at 196 —–
A: bye, bye. B: Bye, bye.


